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Abstract 

THE EFFECT OF SHORT-TERM ANKLE IMMOBILIZATION ON JOINT STIFFNESS AND 

NERVOUS SYSTEM FUNCTION  

Alyssa M. Stirling, ATC 

Chairperson: Alan R. Needle, Ph.D. 

 Ankle sprains are the most common musculoskeletal injury observed in the physically active, 

with high rates of recurrent injury tied to neuromechanical alterations. While immobilization is often 

employed in the treatment of initial ankle sprains, debate remains regarding its beneficial and 

detrimental effects. Previous research has identified alterations in corticospinal excitability following 

upper extremity immobilization; however it remains unknown how immobilization affects 

neuromechanical function at the ankle. Therefore, the purpose of this study was to determine the 

effects of short-term immobilization on stiffness and reflexive and cortical excitability of the ankle 

joint. Twelve able-bodied volunteers (22.5±1.4yrs, 173.05±17.5cm, 71.6±12.7kg) walked on a 

treadmill for 30 minutes while wearing either an ankle immobilizer, pneumatic leg brace, or no 

external support. Joint stiffness, cortical & reflexive excitability were evaluated via ankle arthrometry 

(maximum anterior/posterior displacement, total inversion), transcranial magnetic stimulation (motor 

evoked potential at 90, 110, 150% of active motor threshold), and the Hoffman reflex (Hmax:Mmax 

Ratio), respectively, before and after walking.  Findings revealed no significant change in cortical or 

reflexive excitability across time, conditions, and muscles. These results lend support to the 

hypothesis that short-term immobilization allows for the joint to be protected from potentially 

deleterious loading while possibly presenting alterations in corticospinal excitability. Further research 

is needed to examine how longer bouts of immobilization effect cortical and reflexive excitability.  
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Chapter 1: Introduction 

 Over a lifetime, 60 percent of people have experienced an ankle sprain and up to 74 percent 

of people develop residual symptoms (Anandacoomarasamy & Barnsley, 2005; Attenborough, Hiller, 

Smith, Stuelcken & Greene, 2014; Hiller, Nightingale & Raymond, 2012). These symptoms include 

pain, weakness, swelling, and instability which could lead to recurrent ankle sprains (Hertel, 2002). In 

an effort to negate the risk of recurrent ankle sprains, initial treatment typically consists of the ankle 

being immobilized in combination with functional exercises. A recent position statement from the 

National Athletic Trainers Association provided recommendations that severe ankle sprains be 

immobilized for up to 10 days, while Grade I and II sprains would benefit from functional 

rehabilitation instead of immobilization (Kaminski, et al., 2013). However, these outcomes are largely 

based on return-to-play rather than long-term function and it is unclear how immobilization affects 

mechanical and nervous system function as well as long term joint stability. 

Joint stability depends on the ability of static and dynamic stabilizers to protect the 

ligamentous structures from injurious loads (Freeman, 1965). Both feed-forward (preparatory) and 

feedback (reactive) muscular activity must be coordinated by the nervous system in order to avoid 

injury. Function of the peripheral and central nervous systems have been assessed with measures of 

reflexive and cortical excitability, respectively, documenting the contributions of spinal reflexes and 

the primary motor cortex in providing joint stability (Johansson, 1991; McVey, Palmieri, Docherty, 

Zinder, & Ingersoll, 2005). A relationship between joint stiffness and this neurological function, 

termed neuromechanical coupling, has been described throughout the central and peripheral nervous 

systems (Needle, Palmer, Kesar, Binder-Macleod & Swanik, 2013).  While joint injury variably 

affects mechanical and neurological function, it might lead to neuromechanical decoupling. The exact 

causes for this decoupling has eluded researchers, forcing shifts in current paradigms of joint stability. 
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 Two well established ways to directly quantify central nervous system changes secondary to 

injury are Transcranial Magnetic Stimulation (TMS) and the Hoffmann Reflex (H-reflex). TMS 

allows for direct investigation of cortical excitability and inhibition (Hallett, 2007) while the H- 

Reflex evaluates reflexive excitability (Johansson, 1991; Needle, Baumeister, Kaminski, Higginson, 

Farquhar & Swanik , 2014). 

One factor with the potential to alter neuromechanical coupling is joint immobilization. It has 

been suggested that immobilization protects the joint, leading to improved healing and better long-

term outcomes after ankle sprain (Palmieri, Hoffman & Ingersoll, 2002). However, immobilization 

has also been associated with harmful changes to bone, muscle, ligament and neurological function 

(Lamb, Marsh, Hutton, Nakash, & Cooke, 2009). These differing viewpoints causes a stark contrast 

between basic science research and those investigating clinical outcomes following injury. Limited 

studies have documented the effect of immobilization on central nervous system function 

Lateral ankle sprains present a problem to public health due to both a high occurrence and 

recurrence rate leading to negative effects on lifelong physical activity and health (Lundbye-Jensen & 

Nielsen, 2008; Valderrabano, Hintermann, Horisberger, & Fung, 2006). While initial treatment of 

ankle sprains often utilize immobilization, little is known about how different forms of 

immobilization such as pneumatic leg splints or boot immobilizers affect mechanical function, and 

cortical and reflexive excitability. As treatment of initial ankle sprains often relies on the use of 

immobilization; the distinctive effects of immobilization devices on joint stability may contribute to 

our understanding of why half of patients develop recurrent problems, while others are able to 

successfully heal following their injuries. Therefore the purpose of this study is to determine the 

effect of immobilization on neuromechanical coupling, as quantified through passive ankle stiffness, 

cortical excitability, and reflexive excitability.  
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CHAPTER 2: Review of Literature 

Introduction 

Suffering a lateral ankle sprain has been associated with lower activity level and health 

related quality of life thus presenting a problem to public health (Hubbard-Turner & Turner, 2015). 

Lateral ankle sprains have a high incidence rate both on the athletic field and in everyday life (Boyce, 

Quigley, & Campbell, 2005;  Bridgman, Clement, Downing, Walley, Phair & Maffulli, 2003; Fong, 

Man, Yung, Cheung, & Chan, 2008;  Waterman, Owens, Davey, Zacchilli & Belmont, 2010; 

Swenson, Collins, Fields, & Comstock, 2013). Immobilization is the most commonly used treatment 

intervention; however, it has not been deemed the gold standard of treatment. There is an established 

link between increased stiffness of the ankle joint and immobilization; however, the effects of 

immobilization on cortical and reflexive excitability have yet to be examined. It has been previously 

researched how immobilization of the ankle affects functional outcomes, but not how immobilization 

affects neurological function that controls the ability of the joint to maintain stability.  It is unclear if 

immobilization is beneficial or detrimental to nervous system excitability, which is a vital part of 

maintaining joint stability. The purpose of this review of literature is to review the neuromechanical 

aspects of joint stability and the potential effects of ankle immobilization on these factors. 

Prevalence and Recurrence of Ankle Sprains  

About 625,000 lateral ankle sprains occur every year in the United States (Waterman et al., 

2010; Fong et al., 2008; Hootman, Dick,  & Agel 2007) and make up 14% of musculoskeletal injuries 

seen in accident and emergency departments as well as 15% of injuries in NCAA sporting events 

(Fong et al., 2008; Hootman et al., 2007).  Though ankle sprains are viewed as a mild injury, they are 

the most common reoccurring injury and present a big problem to overall public health (Waterman et 

al., 2010; Hubbard-Turner & Turner, 2015; Houston, Lunen & Hoch, 2014). 

Sixty percent of people have sprained their ankle and up to seventy percent of them develop 

residual symptoms. These symptoms may include pain, weakness, swelling and instability 

(Anandacoomarasamy & Barnsley , 2005; Hiller et al., 2012; Hertel, 2002). Chronic ankle instability 
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(CAI) is described as repetitive episodes of the ankle giving way as well as self-reported functional 

limitations following at least one significant ankle sprain (Gribble et al., 2014). Symptoms of CAI 

include pain, weakness, and recurrent ankle sprains/giving way (Verhagen, de Keizer, & van Dijk, 

1995). Recurrent ankle sprains can increase the risk of long term degeneration of the joint and has 

been found to have a higher prevalence rate when the individual has suffered trauma to the ligaments 

of the ankle (Struijs & Kerkhoffs, 2010; Valderrabano et al., 2006).  Valderranabano et al. (2006) 

investigated 36 patients with ankle instability and found ankle osteoarthritis in 78% of cases 

(Valderrabano et al., 2006). A recent study by Hubbard-Turner examined activity level of those with 

chronic ankle instability compared to those without, and found a decrease in steps per day with the 

CIA group. This decrease exemplifies the potential health risk of those who have CAI (Hubbard-

Turner & Turner, 2015). Most individuals who suffer a lateral ankle sprain return to medical 

professionals due to residual symptoms, reinforcing the importance of early and effective treatment of 

a lateral ankle sprain (Anandacoomarasamy & Barnsley, 2005).  

Maintenance of Joint Stability  

Neurological and mechanical components of joints must work together to prepare for and 

react to a potentially injurious load. During potentially injurious loads, static and dynamic stabilizers 

are utilized to protect ligamentous structures and maintain stability. Muscle contractions generate 

stiffness via musculotendinous units, which in turn provide dynamic protection of joints. In the case 

of lateral ankle sprains for example, the peroneus longus and brevis control supination and thus help 

to protect against lateral ankle sprains (Hertel, 2002). Joint stiffness is defined as resistance to stretch 

by the joint and its supporting structures including joint capsule, ligaments, muscle and skin. 

Ultimately determining the amount of force required to cause an injury (Needle et al., 2013). 

  Neuromuscular function is hypothesized to be a vital component of joint stability (Johansson, 

1991). Protecting a joint from injury requires the nervous system to coordinate both feedforward and 

feedback muscle activity. The feedforward component is a preparatory mechanism. During gait, the 

musculature of the ankle is preactivated before and during the stance phase, and it is theorized that 
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muscle spindle sensitivity is increased. Following the mechanoreceptors sensing a stretch from the 

forced inversion (in the case of lateral ankle sprains) and sends an afferent signal to the spinal cord 

(Gutierrez, Kaminiski & Douex,  2009). Regardless of whether or not this afferent stimulus is enough 

to cause a monosynaptic reflex and initial motor response via muscle twitch, it will continue to ascend 

in the central nervous system. An efferent signal is sent to the gamma motor neuron of the muscle 

spindle of the peroneal muscles and sensitizes the muscle spindles (Gutierrez et al., 2009). The 

sensory information will ultimately be interpreted by the medulla, pons and cerebellum. A reflexive 

response will come from the cerebellum; however, a volitional response to stabilize the joint will be 

formed in the primary motor cortex. The volitional response is considered the feedback component 

(Needle et al., 2013).  

Peripheral and central nervous system function is assessed via reflexive and cortical 

excitability, which depicts the contributions of spinal reflexes and motor cortex in maintaining joint 

stability (McVey et al., 2005; Needle et al., 2014). In order to examine reflexive excitability, the 

Hoffman reflex (H-Reflex) is evaluated via stimulating the nerve directly. The H-reflex estimates the 

excitability of alpha motor neurons, with the maximum value representing the maximum reflexive 

excitability response (Hmax) (Zher, 2002).  Transcranial magnetic stimulation (TMS) is a way of 

assessing cortical excitability by introducing a brief magnetic field to the targeted area of the brain, 

usually the motor cortex and will either excite or inhibit the targeted area. When the motor cortex is 

the targeted area, the response is measured through a muscle twitch known as the motor- evoked 

potential (MEP) (Hallett, 2007). This relationship between excitability and joint stiffness is known as 

neuromuscular coupling. If the injurious loads are too great the reflexive response will be activated 

immediately to aid in the stability of the joint (Needle et al., 2013). Injury may alter this relationship 

and lead to neuromechanical decoupling. The cause for this decoupling mechanism eludes 

researchers. 
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Ankle Sprain Effects on the Nervous System 

Lateral ankle sprains result in adverse changes to the neuromuscular system that lead to a 

decrease in proprioception and neuromuscular control that ultimately contribute to the reoccurrence 

of lateral ankle sprains (Hertel, 2008;  Khin, Ishii, Sakane, & Hayashi, 1999). When the ankle is 

sprained, ligament integrity is compromised causing a decrease of afferent input accuracy. This 

results in sensorimotor adaptations, perceptual changes and structural adaptations. Many authors have 

hypothesized that there is a cascade effect in the development of CAI (Wikstrom & Brown, 2014). 

It is hypothesized that changes to the neuromuscular system, ligamentous injury cause a dual 

cascade of neuromechanical changes to the joint.  Cascade #1 is categorized as the initial injury 

damage forces causing structural adaptations and spinal reflex inhibition as well as residual symptoms 

which occur in the days following the injury. These adaptations and inhibition can be attributed to the 

increase in pressure caused by inflammation as well as chemical mediator release which decreases 

muscle spindle sensitivity.  The pattern of athrogenic inhibition and increased joint laxity present in 

cascade #1 appear to be consistent with all individuals that suffer a lateral ankle sprain.  Within about 

two to four weeks a secondary cascade of neurological changes will occur. Cascade #2 can result in 

either successful or not successful adaptations. If the individual is a coper (successful adaptations and 

no residual symptoms), the cascade will stop and normal function will resume. If the individual is not 

a coper, then unsuccessful adaptations will alter joint loading and supraspinal motor control 

mechanisms. The development of CAI and the continuous negative feedback loop which reverts to 

another injury (Wikstrom & Brown, 2014).  Though the divergent outcomes following cascade #1 

have been established, it is unclear how treatment interventions such as immobilization affect these 

factors and potentially the cascades, despite immobilization being the most commonly used treatment 

method. 

Arthrogenic Inhibition 

Arthrogenic muscle inhibition consists of ongoing inhibition of musculature that surrounds a 

joint following damage to the structures of the joint that is related to pain or joint effusion (McVey et 
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al., 2005). In order to evaluate if arthrogenic inhibition is present in a joint, the Hoffman reflex is 

often tested by estimating the alpha motor neuron excitability. The peak value is the maximal reflex 

activation (Zehr, 2002). Arthrogenic inhibition is represented by a decrease in the Hmax:Mmax ratio. 

This ratio represents the total number of motor neurons able to be activated compared to the total 

number of motor neurons.  This means that the reflexive output capacity of the muscle is minimized, 

thus overall muscle activity is depressed (Matthews, 1966).  

Myers, Reimann, Hwang & Lephart, (2003) investigated the effects of lidocaine and saline 

injections into the lateral ligaments of the ankle and found a decreased response following each 

injection when inversion loads were applied (Myers et al., 2003).  A study conducted by McVey et al. 

(2005) evaluated the H-reflex in healthy individuals both with unilateral ankle instability and without 

ankle instability. This study found that a depressed H: M ratio in the soleus and peroneus longus of 

the unstable ankle compared to the stable ankle. These results contribute to the notion that 

neuromuscular deficits are present after an injury to the ankle joint. It is known how an injury affects 

the values of the H-reflex and H: M ratio. It is unknown how different treatment interventions affect 

these values in the lower extremity. 

Treatment Methods of Lateral Ankle Sprains  

A position statement from the National Athletic Trainers Association provides guidelines that 

Grade I and II sprains would benefit from functional rehabilitation over immobilization and that 

severe ankle sprains be immobilized for up to ten days.  These outcomes are based on time to return-

to-play instead of long-term function of the joint and it is unclear how different modes of 

immobilization affects nervous system function of the joint (Kaminski et al., 2013). The most 

common forms of immobilization for the ankle joint are a Bledsoe boot, Aircast and compression 

wrap/tubular bandage. 

Functional treatment (early immobilization and external support) improves both stability and 

function of the ankle compared to immobilization alone (Struijs & Kerkhoffs, 2010). The general 

consensus is that immobilization is a more effective treatment method compared to no treatment. Eiff, 
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Smith, & Smith (1994) compared early mobilization with immobilization (nonweight-bearing cast for 

ten days) and found that the early mobilization group returned to functional activities sooner and 

reported less pain than the immobilization group (Eiff et al.,1994).  Lamb et al. (2009) investigated 

functional outcomes following a ten day below the knee casting and found notable improvements in 

ankle function, pain and swelling at three months when compared to the AirCast and tubular bandage. 

However nine months following the immobilization period there was no notable difference between 

the interventions (Lamb et al., 2009).  

Effects of Immobilization 

It has been found that immobilization for greater than four week will decrease symptoms but 

also decrease function of the joint (Struijs & Kerkhoffs, 2010). Functional deficits following a period 

of immobilization include decrease in range of motion and balance, while also contributing to atrophy 

of the musculature. Separate from atrophy, functional deficits can also be explained by alterations in 

nervous system function. It has been found that immobilization causes a decrease in central activation 

of muscle (Clark, Taylor, Hoffman, Dearth & Thomas, 2010) while also increasing reflex excitability 

(Lundbye-Jensen & Nielsen, 2008). Immobilization also decreases maximal motor neuron firing rate 

(Seki, Kizuka & Yamada, 2007). The overall consequence is decreased ability to activate skeletal 

muscle via the nervous system (Clark et al., 2010). Though there is limited research on effects of 

immobilization on the neurological function of the lower extremity, there is research on how 

immobilization affects the neurological function of the upper extremity.  

After casting the wrist in eleven healthy subjects for three weeks, it was found that wrist 

flexion strength decreased significantly and remained depressed fifteen percent after a week’s 

recovery. Central activation remained significantly decreased after one week recovery. The H reflex 

increased following immobilization and remained elevated after one week of recovery (Clark et al., 

2010). A different study also found muscle strength deficits following a week of wrist immobilization 

in ten subjects. Maximum voluntary isometric contraction torque decreased. Decreases in strength 

and central activation despite hypersensitivity of the H-reflex remain constant despite recovery time 
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(Lundbye-Jensen & Nielsen, 2008). This may contribute to recurrent injuries to the joint following 

immobilization.  

When comparing an Aircast and a tubular bandage, subjects wearing the Aircast had 

significantly better joint function at both ten days and one month following an ankle sprain (Boyce et 

al., 2005). Functional outcomes of casting compared to compression bandage were significantly better 

after three months but show no significant differences by the nine month mark following injury. 

There is no significant benefit in using the Bledsoe boot over the compression wrap (Lamb et al., 

2009). Though functional outcomes are vital in evaluating the effectiveness of an immobilization 

intervention, consideration of the effects on the H-reflex and H:M ratio should be taken into account. 

Findings after casting below the knee are consistent with the finding of casting the wrist (Clark et al., 

2010). There was an increase in H reflex activity and a decrease in maximum voluntary contraction 

(Lundbye-Jensen & Nielsen, 2008).  The change in muscle activity and H reflex demonstrates the 

effect of below the knee casting on neurological function.  

These changes in both functional outcomes and neuromechanical measures can also be 

observed during short – term immobilization (i.e. bracing and taping). Ankle braces worn during 

functional tests decrease muscle activity in the lateral gastrocnemius, anterior tibialis, and peroneus 

longus (Feger, Donovan, Hart, & Hertel, 2014). This decrease in muscle activity can be a contributing 

factor to recurrent ankle sprains. In a high school athlete population, 10% of ankle sprains that took 

place while the athlete was wearing a brace (Swenson et al., 2013). When reflexive excitability of the 

soleus while subjects wore an ankle brace while standing on both an unstable and stable surface was 

investigated there was no effect on SOL reflex depression. This illustrated that short-term 

immobilization may decrease the dependence on the motorneuron pool while also increasing ankle 

stability on an unstable surface (Sefton, Hick-Little, Koceja & Cordova, 2007). 

Though immobilization is a widely used intervention for lateral ankle sprains, there is limited 

research on the neurological effects of immobilization in the ankle. It is unknown if the decrease 

function of the joint leaves an individual more at risk for a recurrent ankle injury. 
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Conclusion 

Lateral ankle sprains present a problem to public health due to both a high occurrence and 

recurrence rate. Immobilization is the most commonly implemented technique. It is known how 

immobilization of the ankle affects functional outcomes but it is unknown how immobilization affects 

neurological function of the joint. The purpose of this study is to determine the effect of 

immobilization on cortical and reflex excitability in the ankle joint. It is hypothesized that ankle 

immobilization will increase ankle stiffness as well increase reflexive excitability and decrease 

cortical excitability. It is also hypothesized that immobilization changes the relationship between 

laxity and neuromechanical variables. 
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Chapter 3: Methodology 

Experimental Design    

The purpose of this study was to determine the effect of immobilization on mechanical 

function, and cortical & reflexive excitability in the ankle joint. This study employed a pre-test post-

test design with repeated measures. The independent variables were immobilization device 

(pneumatic leg splint, boot immobilizer, or no intervention), time (pre and post-walking) and, with 

regards to excitability measures, muscle (gastrocnemius, tibialis anterior and peroneus longus). 

Dependent variables will include measures of passive joint stiffness, cortical excitability (motor 

threshold, maximum response) and reflexive excitability (Hmax:Mmax).     

Participants.   

Twelve (22.5±1.4yrs, 173.05±17.5cm, 71.6±12.7kg) able-bodied and physically active males 

and females without a history of ankle sprains volunteered to participate in this study. Exclusion 

criteria were current leg injury or history of any fracture or surgery to the legs. TMS exclusion criteria 

included metal or electronic implant, history of seizure, concussion within the past 6 months, 

currently pregnancy or being treated for a psychiatric or neurological disorder. These were confirmed 

via the Physical Activity Readiness Questionnaire (PAR-Q) and TMS exclusion questionnaire 

(Rossi, Hallett,Rossini & Pascual-Leone, 2009).    

Instrumentation.  

In order to assess ankle laxity, an instrumented ankle arthrometer (Blue Bay Research, 

Milton, FL) consisting of a loaded cell connected to an instrumented handled as well as a footplate 

connected to a shin pad by means of a six degrees-of-freedom kinematic linkage system was used. 

The arthrometer will assess anteroposterior force as well as inversion-eversion force. Participants’ 

cortical excitability was evaluated using transcranial magnetic stimulation (TMS, Magstim 20-2 LTD, 

Wales, UK) with a double conical coil that targets the lower extremity. A DS7AH Constant Current 

Stimulator (Digitimer LTD, Hertfordshire, England) connected in series with a bar electrode was used 

to assess reflexive excitability. Electromyographic activity from surface electrodes on the tibialis 
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anterior, gastrocnemius and peroneus longus was recorded using a Bagnoli-4 EMG system (Delsys, 

Boston, MA) (Kovaleski, Hollis, Heitman, Gurchiek & Pearsall, 2002).   

Procedures  

Following approval from the Appalachian State University Institutional Review Board, 

participants were asked to report for a total of 3 testing sessions 2 to 7 days apart. Each testing session 

lasted approximately 2.5 hours in duration. During the first testing session, after providing informed 

consent, participants were asked to complete a health screening questionnaire that the investigator 

will review with the subject to determine study eligibility prior to each session (Appendix).   

During each testing session, participants’ ankle laxity, dorsiflexion range of motion and cortical and 

reflexive excitability were tested before and after walking on a treadmill for 30 minutes at 1 m/s.  

Mechanical Measures. 

Ankle laxity was assessed using an instrumented ankle arthrometer (Figure 1). Laying supine 

on a table, the arthrometer was affixed to the participant’s ankle and 5 anterior-posterior translations 

to 125 N (50N/s); followed by 5 inversion-eversion rotations to 4.2 Nm (1Nm/sec) (Kovaleski et al., 

2002).  Peak laxity and stiffness across groups were extracted for analysis.  

Functional dorsiflexion range of motion was assessed using a weight bearing lunge (Figure 

1). The participant placed two fingers from each hand on the wall to help keep balance. The 

participant then place his/her foot on a tape measure on the ground with their great toe on the line 

marked zero inches and lunge towards the wall by bending their ankle until the knee is in contact with 

the wall. Once completed the participant gradually moved back. The participant kept their heel in 

contact with the ground to be able to move to the next measurement back. The greatest distance 

reached was recorded (Chisholm, Birmingham, Brown, Macdermid & Chesworth, 2012).  

Excitability Measures. 

For measurement of cortical and reflexive excitability (Figure 2), participants were 

instrumented with electromyography sensors (Delsys Inc., Boston, MA) over the tibialis anterior, 

peroneus longus, and soleus muscles of each leg. The area where the electrodes were placed was 
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shaved (if necessary), cleaned with an alcohol swab, and abraded to ensure a quality signal 

(Basmaijian,1967). Cortical excitability was assessed using a Magstim 200-2 Magnetic Stimulator 

with a double-conical coil (MagStim LTD, Wales, UK). Participants were seated in a chair with a 

tightfitting cap on the head and provided earplugs to wear throughout testing. Prior to testing, we 

quantified the maximum voluntary muscle activity by having the subject evert their ankle maximally 

for 2 seconds, repeated up to 3 times. TMS was delivered under 2 conditions – with the muscles 

relaxed and with the subject voluntarily contracting their muscles at 10 percent of maximal effort 

(with visual feedback via a lab tablet to aid consistent effort). The “hotspot (location of maximum 

peak-to-peak MEP) was located by first identifying  the vertex of skull then moving the coil lateral 

and anterior 1 cm. Intensity of the pulses was then gradually increased until a small muscle 

contraction was visible. Next the coil was moved in approximately 5-mm radius in order to determine 

where the largest MEP was observed (Conforto, Z’Graggen, Kohl, Rosler & Kaelin-Lang,  2004). 

This location was then marked on the cap. Motor threshold was determined by stimulating over a 

range of intensities with the subject relaxed. After determination of motor threshold and the hotspot, 

the coil was placed on the hotspot and 10 pulses of 90, 110 and 150 percent of the resting motor 

threshold (30 pulses total) were applied, while EMG activity was collected at 2000 Hz. All data were 

collected and intensities were triggered using customized LabVIEW software (National Instruments, 

Austin, TX).   

For testing the Hoffmann reflex, a probe electrode was applied behind the knee, in the 

superolateral corner of the popliteal fossa. The location of the sciatic nerve proximal to its bifurcation 

in tibial and common peroneal divisions were assessed by applying brief pulses and identifying the 

location that is able to generate the greatest muscular response across all 3 muscles at the lowest 

stimulation intensity. Brief electrical pulses (1ms) were applied beginning at a low intensity, while 

the current was gradually increased by 2mA until a maximal response was observed from the 

muscles. The direct muscle activation (M-wave, 10-40ms) and the reflexive response (H-wave, 50-
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100ms) was identified and peak-to-peak values were extracted. Electromyography data was collected 

at 2000 Hz.   

Following the measures being taken, the subject walked on the instrumented treadmill for 30 

minutes either barefoot; with a pneumatic leg splint (Aircast Air Stirrup Ankle Brace, DJO Global, 

Vista, CA); or with an ankle immobilizer (AirCast PF Walker Boot, DJO Global, Vista, CA). The 

order of immobilization type was randomized for each participant. The measures were then repeated 

immediately after walking.    

Data Reduction and Analysis  

In order to calculate cortical excitability, peak-to-peak amplitudes muscle activity was 

normalized to the largest observed MEP and plotted against the stimulus intensity to form a stimulus-

response curve. A curve was fitted to these data using a Levenberg-Marquardt nonlinear fit with a 

modified Boltzmann equation: 

y =
MEPmin + (MEPmax −MEPmin)

1 + e[m(I50−x)]
 

From this equation, the maximum response (MEPmax) was extracted as our measure of 

cortical excitability. From the Hoffman reflex, stimuli were analyzed for peak-to-peak amplitude 

from 10-50ms and 60-100ms after the stimulus to identify the direct and reflexive muscle response. 

The maximal reflexive response was normalized to the maximal direct response to determine 

reflexive excitability.  

All data was analyzed in custom LabVIEW software. Total anterior-posterior displacement, 

inversion-eversion rotation, and dorsiflexion rotation was extracted, as well stiffness in the first, 

middle, and last second of force application (N/mm or N/deg). Muscle activation during TMS pulses 

were visually inspected for artifacts and peak-to-peak values of motor evoked potentials were 

averaged for each stimulation intensity. Similarly, M-waves and H-waves from Hoffman reflex 

testing were inspected, and the maximum M-wave and maximum H-wave were determined separately 

for each muscle. The ratio of Hmax to Mmax was extracted and used for analysis. Laxity and 
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dorsiflexion range-of-motion were assessed using 2-way analyses of variance (ANOVA) with 2 

within-subjects factors (time, 2 levels; device, 3 levels). Cortical and reflexive excitability variables 

was assessed using 3-way ANOVA’s with 3 within-subjects factors (time, 2 levels; device, 3 levels; 

and muscle, 3 levels).  
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Chapter 4: Results  

Mechanical Measures. 

 Mechanical values of joint stiffness and dorsiflexion range of motion are presented in Table 

1. There was no significant main effect of condition (F[2,16]=.133, p=.876) or time (F[1,8]=4.737, 

p=.061) on maximum displacement. A significant effect however, was detected for immobilized side 

(F[1,8]=8.934, p=.017). Significance was not found for interaction effects of condition*time 

(F[2,16]=.103, p=.902) , time*side (F[1,8]=1.468, p=.260) or 3-way interaction condition*time*side 

(F[2,16]=.640, p=.541). A significant interaction effect of condition*side was observed (F[2,16]=.102, 

p=.026). Total inversion yielded no significant main effect of condition (F[2,20]=.110, p=.896), time 

(F[1,10]=.580, p=.464) and side (F[1,10]=.424, p=.530). There was also no significant interaction effect 

between condition*time (F[2,20]=3.078, p=.068), condition*side (F[2,20]=1.635, p=.220), time*side 

(F[1,10]=.133, p=.723) or 3-way interaction condition*time*side (F[2,20]=.114, p=.893) 

Functional Dorsiflexion Range of Motion. 

Weight bearing lunge yielded no significant effect of condition (F[2,20]=.132, p=.877), time 

(F[1,10]=.974, p=.347) or side (F[1,10]=2.918, p=.118). Interaction effect also showed no significant 

effect between condition*time (F[2,20]=.204, p=.817),condition*side (F[2,20]=1.738, p=.201) but 

significance was found between time*side (F[1,20]=6.328, p=.031). 3-way interaction of 

condition*time*side (F[2,20]=2.294, p=.127) elicited no significant effect. Fisher’s LSD pairwise 

comparison revealed no significant difference of time pre or post (p=.083, p=.181). 

Reflexive Excitability.   

 Hmax:Mmax ratio values are presented in Table 2. Though there was no significant effect of 

condition (F[2,16]=.243, p=.787), there was a significant effect of time (post)  (F[1,8]=6.337, p=.036) and 

muscle (soleus) (F[2,16]=14.614, p=.000). There was no interaction effect significance detected 

between condition*time (F[2,16]=.016, p=.985), condition*muscle (F[4,32]=.106, p=.980), time*muscle 

(F[2,16]=.676, p=.523) and 3-way interaction of condition*time*muscle (F[4,32]=.566, p=.689).  
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Cortical Excitability. 

 MEP size at 90, 110 and 150% of active motor threshold values are presented in Table 3. 

Across all three muscles (TA , PL, and SOL) there was no significant effect of condition [TA 

(F[2,16)=1.733, p=.208), PL (F[2,14]=2.188, p=.149), SOL (F[2,16]=1.338, p=.290)]  or time [TA 

(F[1,8]=3.379, p=.103), PL (F[1,7]=.069, p=.800),SOL (F[1,8]=.135, p=.723)]. There was however a 

significant effect of intensity [TA (F[2,16]=43.88, p=.000), PL (F[2,14]=50.064, p=.000),SOL 

(F[2,16]=7.520, p=.005)] observed in all three muscles (90%<110%<150%). Interaction effects of 

condition*time [TA (F[2,16]=.224, p=.802),PL (F[2,14]=.425, p=.662),SOL (F[2,16]=2.105, 

p=.154)]condition*intensity [TA (F[4,32]=1.152, p=.350), PL (F[4,28]2.039, p=116), SOL (F[4,32]=1.077, 

p=.3840] time*intensity [TA (F[2,16]=2.181, p=.145),PL (F[2,14]=1.410, p=.277), SOL (F[2,16]=.182, 

p=.836)] and 3-way interaction of condition*time*intensity [TA (F[4,32]=.192, p=.941), PL 

(F[4,28]=.864, p=.498), SOL (F[4,32]=.133, p=.876)]  yielded no significant results in across the three 

muscles.   
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Chapter 5: Discussion 

Introduction 

The purpose of this study was to assess alterations in joint stiffness and corticospinal 

excitability following an acute bout of immobilization of the ankle joint. It was hypothesized that 

joint stiffness and reflexive excitability would increase while cortical excitability would decrease 

after walking in an immobilization device for 30 minutes. While prior research has provided evidence 

of immobilization-induced neuroplasticity at the cortical and segmental levels, the current 

investigation revealed no significant change in joint stiffness or reflexive and cortical excitability 

following 30 minutes of ambulation using a pneumatic leg splint (Aircast) or ankle immobilizer 

(boot). While several explanations for discrepancies from prior research will be presented, these data 

suggest that alterations to stiffness and nervous system excitability observed following longer bouts 

of immobilization are likely not due to short-term changes in neurological function, but rather a 

combination of tissue contracture and long-term potentiation. 

Mechanical Measures. 

Clinicians typically exercise caution in utilizing immobilization devices, citing tissue 

contractures contributing to adhesions and subsequent decreased range-of-motion as a key limitation 

(Kaminski et al., 2013). This is largely due to the lack of normal stresses being placed on tissue, 

leading to decreased strength and increased stiffness of the collagen structures comprising the 

ligament and joint capsule (Järvinen, 1977). However, it has also been hypothesized that alterations in 

afferent feedback may serve to modify fusimotor activity responsible for the regulation of muscle 

tone (Needle et al., 2013). In the present investigation, no significant changes in anterior 

displacement, total inversion-eversion laxity or functional dorsiflexion range of motion were 

observed following 30 minutes of immobilization. Several explanations may be hypothesized for the 

lack of mechanical changes following immobilization but notably this may be explained by the 

inclusion of a 30-minute walking task, which could have caused a temperature rise that raises 
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collagen elasticity as opposed to the contractures expected (Miller, Needle, Swanik, Gustavsen & 

Kaminski, 2012).  

Following periods of immobilization up to 2 weeks, Landrum et al. (2008) found injured 

subjects displayed decreased anterior-posterior displacement. Dorsiflexion range of motion has also 

been found to decrease following prolonged ankle immobilization (Freeman, 1965). Some clear 

methodological differences may explain the discrepancies in results between these studies and the 

current investigation. For instance, the inclusions of pathological populations have typically been 

incorporated to decrease undue burden on otherwise healthy individuals; yet these pathologies may 

have contributed to joint contracture. Additionally, these investigations have looked at long-term total 

immobilization or casting that would clearly indicate a more severe stimuli than 30 minutes of less 

restrictive devices.  

Reflexive Excitability.  

Reflexive excitability describes the strength of the motor response elicited from stimulation 

of Ia afferents. This is analogous to the stretch reflex, and is determined by sensitivity of muscle 

spindles as well as the size and excitability of the alpha motor neuron pool at the segmental level. We 

hypothesized that reflexive excitability would increase following a 30-minute period of 

immobilization. By restricting joint motion, the lack of peripheral stimuli to peripheral 

mechanoreceptors would decrease the threshold needed to evoke a reflexive response ultimately 

increasing the excitability of the reflex (Johansson, 1991). Contrary to our hypothesis, there was no 

significant change in reflexive excitability following acute immobilization. One potential explanation 

is the degree of immobilization used for the present study allowed for some degree of movement at 

the joint and thus proprioceptive feedback that served to negate the inhibitory influences expected.  

These results were conflicting with a previous study conducted by Lundbye-Jensen & 

Nielson (2008) that detected an increase of reflexive excitability of the hand and wrist musculature 

following one week immobilization. Differences in extremity (leg versus arm), time of 

immobilization (30 minutes versus 2 weeks) and also intensity of immobilization (splint versus cast) 
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may be able to account for the differences. Sefton et al., (2007) examined reflexive excitability of the 

soleus while subjects wore an ankle brace while standing on both an unstable and stable surface and 

found no effect on SOL reflex depression. The intensity and duration of immobilization were 

comparable to our investigation. Since the soleus is a postural muscle reflexive excitability may not 

be influenced in acute bouts of immobilization or activity.   

Cortical Excitability.  

The excitability of corticospinal pathways assessed via transcranial magnetic stimulation 

provide a measure of the “ease” of volitional contracture to target musculature from the primary 

motor cortex . Although we observed a decrease in corticospinal excitability following walking, this 

occurred across all muscles and under all conditions, and not specific to immobilization device as 

hypothesized. As expected, excitability increased with stimulus intensity; however immobilization 

did not affect the modulation of cortical excitability. While multiple factors, including medications 

and injury, have been observed to modify corticospinal excitability, it was hypothesized that this 

property would decrease secondary to decreased sensory feedback from peripheral mechanoreceptors 

surrounding the ankle joint. The decreased input to the somatosensory cortex would then serve to 

lessen the input to the primary motor cortex from supplementary motor areas. 

A single prior investigation has discussed cortical excitability as it related to lower extremity 

immobilization. Leukel et al. (2015) examined cortical excitability following eight weeks of ankle 

casting, noting increases in overall cortical excitability. Key differences of intervention and time 

immobilized may serve to explain why a change was not seen in our study. Devices used in our study 

(pneumatic leg splint and ankle immobilizer), allowed for some accessory and mild physiologic 

movement of the ankle joint that would not be permitted in a cast. The increase in cortical excitability 

seen in eight week casting of the ankle joint may be due to an elimination of sensory stimulus as well 

as elimination of lower leg musculature activation via the motor cortex. Authors hypothesized that the 

increase in cortical excitability was caused by pathway-specific adaptations over the 8-weeks that 

may not be sufficiently observed across 30-minutes.  
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The most notable difference between the current investigation and those previous models of 

cortical excitability in the upper and lower extremities is the duration of immobilization. Long-term 

immobilization would cause neuroplasticity secondary to long-term potentiation. However, an aim of 

this study was to determine whether immobilization was capable of modifying synaptic plasticity via 

post-tetanic potentiation (PTP): a transient effect of motor learning due to an excess amount of 

calcium within the synapse. A 30 minute treadmill walk was not enough to induce changes in cortical 

excitability, lending support to the hypothesis that PTP did not occur. Another crucial factor to 

consider is that walking is a subcortical task; yet, has been observed to cause changes in cortical 

excitability when a novel element is added. Barthelemy, Alain, Grey, Neilson & Bouyer , (2012) 

induced cortical excitability changes by causing an adaption to force fields while walking. Though 

time walking was comparable, walking while immobilized was not sufficient enough to induce 

plasticity and ultimately post-tetanic potentiation (PTP) because minimal adaptations were needed to 

complete the task in comparison to walking with the force field.  This may mean that using the ankle 

immobilizer does not contribute to maladaptation. Further research of long term effects is needed to 

support this notion. 

Limitations.  

There were several limitations to this investigation. Time of immobilization (thirty minutes) 

and walking speed (1m/s) may not have been high enough to induce post-tetanic potentiation and 

ultimately changes in corticospinal excitability. Cortical excitability was assessed for lower leg 

muscles that directly affect movement of the ankle joint but excitability may have been more likely to 

change at either the gluteal or the quadriceps muscles. Furthermore, there was no control variable pre 

measures such as time of day and caffeine intake which effect excitability due to both subject and lab 

scheduling constraints. Time of day and caffeine may have contributed to variable pre measures 

(Cerqueira, Mendonca, Minez, Dias & Carvalho, 2006). 
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Conclusion 

Our data suggest that short-term immobilization of the ankle does not induce significant 

changes in joint stiffness or nervous system excitability. When considering the deficits observed in 

patients with chronic joint instability, it could be theorized that decreases in sensory feedback caused 

by immobilization would not be beneficial. Yet depravation of feedback would be beneficial for 

individuals with acute inflammation experiencing nociception and increases in intracapsular pressure. 

Our results indicated that for these effects to potentially occur, a longer period of time and/or a more 

restrictive immobilization device must be utilized. Lamb et al. (2009) proposed that a short period of 

immobilization (2-3 weeks) in a below-knee cast leads to fastest recovery. Our results lend support to 

the hypothesis that short-term immobilization allows for the joint to be protected from potentially 

deleterious loading while possibly preventing alterations in corticospinal excitability.  

A recent position statement from the National Athletic Trainers’ Association recommended 

limiting immobilization and incorporating functional rehabilitation for grade I and II ankle sprains; 

and at least 10 days of immobilization with a rigid brace or below the cast for grade III (Kaminski et 

al., 2013). Our data does not support modification of the recommendation, however growing evidence 

in this field suggests neuromechanical adaptations that occur after immobilization may be vital in 

correcting deficits in chronically injured joints. In order for further treatment recommendations to be 

made, studies must be conducted with pathological populations and across varying device and time-

frames. Future research is needed to investigate the long-term outcomes following short-term 

immobilization 
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Tables  

Table 1  

Descriptive Statistics of Mechanical Measures  

Max Displacement  

    Barefoot Pneumatic Leg Splint Ankle Immobilizer  

Im
m

 

Pre/Post 9.53/10.06 8.63/10.36 8.78/8.76 

STD 2.891/3.19 2.33/3.24 3.51/3.82 

N
o
n

 

Pre/Post 8.32/8.95 8.45/8.64 9.21/10.51 

STD 2.753.91 3.22/2.28 3.265/2.47 

Total Inversion  

    Barefoot Pneumatic Leg Splint Ankle Immobilizer  

Im
m

 

Pre/Post 27.18/27.09 25.16/27.62 30.20/26.07 

STD 10.25/10.2 9.94/10.09 13.24/12.86 

N
o
n
 

Pre/Post 27.60/26.58 27.91/29.41 30.65/26.91 

STD 11.39/8.94 11.73/12.41 12.201/9.97 

Weight Bearing Lunge  

    Barefoot Pneumatic Leg Splint Ankle Immobilizer  

Im
m

 

Pre/Post 11.27/11.45 11.55/11.27 11.19/11.27 

STD 4.10/4.03 4.27/4.13 3.92/3.85 

N
o
n
 

Pre/Post 10.45/10.63 10.45/10.81 10.64/10.92 

STD 3.36/3.12 3.14/3.34 3.53/3.18 
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Table 2 

Descrptive Statistics of Hmax:Mmax Ratio 

  

 

  

H:M Ratio  

    Barefoot Pneumatic Leg Splint Ankle Immobilizer 

 T
A

  

Pre 0.19 0.22 0.22 

STD 0.10 0.06 0.07 

Post 0.17 0.22 0.19 

STD 0.06 0.07 0.04 

P
L

 

Pre 0.24 0.22 0.25 

STD 0.17 0.12 0.12 

Post 0.20 0.21 0.22 

STD 0.13 0.13 0.11 

S
O

L
 

Pre 0.40 0.43 0.41 

STD 0.18 0.19 0.16 

Post 0.36 0.35 0.38 

STD 0.15 0.15 0.16 
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Table 3 

Descriptive Statistics of MEP size Based on Condition and Time 
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Figure 1: Ankle Arthrometer assessment of 

Anterior-Posterior displacement and total 

inversion via Instrumented Ankle Arthrometer  
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Figure 2: Assessment of functional 

dorsiflexion range of motion via Weight 

Bearing Lunge  
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Figure 3: Hoffman Reflex  setup 
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Figure 4: Transcranial Magnetic 

Stimulation setup  
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Consent Forms  
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